D ec 1 99 9 Group Analysis of Differential Equations and Generalized Functions
نویسنده
چکیده
We present an extension of the methods of classical Lie group analysis of differential equations to equations involving generalized functions (in particular: distributions). A suitable framework for such a generalization is provided by Colombeau’s theory of algebras of generalized functions. We show that under some mild conditions on the differential equations, symmetries of classical solutions remain symmetries for generalized solutions. Moreover, we introduce a generalization of the infinitesimal methods of group analysis that allows to compute symmetries of linear and nonlinear differential equations containing generalized function terms. Thereby, the group generators and group actions may be given by generalized functions themselves.
منابع مشابه
Hybrid Fuzzy Fractional Differential Equations by Hybrid Functions Method
In this paper, we study a new operational numerical method for hybrid fuzzy fractional differential equations by using of the hybrid functions under generalized Caputo- type fuzzy fractional derivative. Solving two examples of hybrid fuzzy fractional differential equations illustrate the method.
متن کاملThe fuzzy generalized Taylor’s expansion with application in fractional differential equations
In this paper, the generalized Taylor’s expansion is presented for fuzzy-valued functions. To achieve this aim, fuzzyfractional mean value theorem for integral, and some properties of Caputo generalized Hukuhara derivative are necessarythat we prove them in details. In application, the fractional Euler’s method is derived for solving fuzzy fractionaldifferential equations in the sense of Caputo...
متن کاملStability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملGroup Analysis of Differential Equations and Generalized Functions
We present an extension of the methods of classical Lie group analysis of differential equations to equations involving generalized functions (in particular: distributions). A suitable framework for such a generalization is provided by Colombeau’s theory of algebras of generalized functions. We show that under some mild conditions on the differential equations, symmetries of classical solutions...
متن کاملN ov 1 99 6 Dimensional renormalization in φ 3 theory : ladders and rainbows
The sum of all the ladder and rainbow diagrams in φ3 theory near 6 dimensions leads to self-consistent higher order differential equations in coordinate space which are not particularly simple for arbitrary dimension D. We have now succeeded in solving these equations, expressing the results in terms of generalized hypergeometric functions; the expansion and representation of these functions ca...
متن کامل